分类专栏
C语言指向二维数组的四种指针以及动态分配二维数组的五种方式
2401_87760042: calloc不需要类型转换吗
做而论道_CS: 要说浮点数,它真和计算机,没有什么关系。 计算机分为五大部分: 运算、控制、存储器、输入、输出设备。 32 位数浮点数,仅仅用了四个字节。 它连半个部分,都算不上啊! 用 32 位数,代表更大和更小的数值, 这只是一个算法而已,属于数学领域的知识。 无论这算法是难还是简单, 它和计算机原理,并无任何联系。 所以,浮点数: 既不属于计算机《组成》,也不属于《计算机原理》。 对于浮点数,计算机,只是个数学工具而已。 也就像一支笔一样,写写算算就完了。 当你学写毛笔字时,你还学怎么写浮点数吗?
做而论道_CS: 要说补码啊,并没有那么复杂。 实际上,补码,不仅仅是二进制数。 实际上,任何进制,都是有 “补码” 存在的。 补码,也并不是什么取反加一。 补码,它是来自于【舍弃进位】。 你看十进制,两位数:0~99。 那么有:27 + 99 = (一百) 26 也可以:27 - 1 = 26 如果你忽略进位,依然保持两位数,这两种算法,就是相同的。 即,当你舍弃了进位: 正数,就能代替负数使用。 加法,也就能实现减法运算。 那么,减法都不存在了,减法器,当然也就没有用了。 所以,计算机,只用一个加法器,就可以横行天下! ---------------- 两位十进制时,舍弃进位,就是减去一百(10^2)。 那么,加上 99,再减 100,显然就是 “-1”。 八位二进制数,就是:0000 0000~1111 1111。 换算到十进制,就是:0 ~ 255。 如果出现进位,即为:2^8 = 256。 那么,加上 255 (1111 1111),再舍弃进位,不也是-1 ? 同理,+254 (1111 1110),这不就是-2 ? 还有,+253 (1111 1101),就是-3 了。 。。。 。。。 最后,+128 (1000 0000),就是-128。 此外的 +0、+1、... +127,都不会产生进位。 那么,即使舍弃进位,它们也不会呈现出负数的现象。 所以,0 ~ +127 就只能当正数使用。 ---------------- 所谓的补码,就是这么点小事啊! 上过小学的人,自己都会推算出来。 咋就能说: 机器数符号位原码反码补码正数三码相同负数原码取反加一符号位不变符号位也参加运算 ... 这些计算机教材的作者,就是吃的太饱了。 每天就蹲在墙根,一本正经的胡诌八扯!
Xuehuajjp: 判断环的方法太好了,赞👍🏻!
marduc: C:\Users\你的用户名\AppData\Local\Microsoft\Edge\User Data 这个地址下没有PepperFlash那个文件夹。新建了一个放进去也没用。